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SECTION 1. INTRODUCTION

1.1 Some Causes of Free~Flight Rocket Dispersion

As their designation implies, free-flight rockets are not guided
after they are launched. Hence, their flight paths are altered by
random disturbing forces and moments which act during free-flight. Two
of the more important of the random disturbing moments are those due to
thrust misalignment and dynamic mass imbalance.! For a spinning rocket,
the observed effects of these two types of moments are similar during the
thrusting portion of flight; they both lead to random deviations of rocket
flight paths which are categorized as ''dispersion."

Another cause of dispersion can be the motion of the launcher during
the guidance phase, since such motion determines the initial conditions
for the free-flight phase of the rocket's total trajectory. However,
motion of tiue launcher (except during pointing) is caused only by the
rocket(s) fired from it. Thus, except for random imperfections in the
rocket(s), motion of the launcher should be essentially deterministic.

It also follows that the random motion of a free-flight rocket after it
is launched and the random motion of the system of rocket-plus-launcher
during guidance are intimately connected since they arise, at least
partially,Jr from the same source(s).

Previously, the connection between the random motion of a launcher

and that of a rocket fired from it has, for the most part, been disrevarded

+

Other random imperfections in the rocket - for example, misaligned
fins - cause random motion of the rocket, but not the launcher.

1
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There are at least two reasons for this. First, because launchers are
often fairly massive (as compared to the rocket(s)) and the random
disturbing moments are small in magnitude, the random part of the launcher i
motion caused by rocket imperfections is often very small. Second, because
mathematical "simulation" of the flight of all sorts of vehicles is very 4

widespread, while simulation of launcher/rocket systems is not, the only

option an analyst has may be to treat the random parts of rocket and i
launcher motions as independent. Still, because rocket imperfections |
cause launcher motions, one may logically inquire if these motions are i
always detrimental or may, by proper launcher design, be used to decrease
dispersion. 1

1.2 General Concept of Passive Control 3

The idea of designing a launcher to compensate for rocket imperfec-
tion lead to the PADA® concept of compensating for dynamic mass imbalance
by allowing an unbalanced, spinning rocket to spin about its principal
axis of least inertia on the launcher. This concept has been noted in
a later design handbook. ? Apparently little has been done to utilize it,
although interest has not entirely died out." The work reported in Ref. 5
should also be mentioned. During that analysis, Christensen noted that
for certain launcher natural frequencies, the launcher motion partially

compensated for post-launch effects of rocket imperfections.

The PADA concept can ve categorized as passive control. That is,

"control' over the motion of the rocket at end of guidance (EOG)T results

1-"End of guidance," as used herein, is the time at which physical con-
tact between launcher and rocket ends. It is assumed that no motion of the :
rocket is caused by motion of the launcher after this time. This assumption
does not entirely preclude the presence of aerodynamic interference effects.
but does require that they be the same regardless of the launcher's motion.
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in a smaller deviation from the flight path it would have flown had there
been no disturbance (the nominal flight path), than there would have been
if the launcher did not respond at all. The control action is passive

as opposed to active since no energy from outside the system, only

energy inherent in the system, is used to implement control. Passive
control has been used effectively to stabilize spacecraft.G Another
example is controls-fixed stability of aircraft.’

1.3 Potential of Launchers as Passive Controllers

An effective control system (passive or active) must sense random
disturbances and reduce the undesirable effects of the disturbances.
Hence, the system of launcher-plus-rocket must meet two basic requirements
for passive control to be possible: (1) The launcher must respond to
disturbances arising from random imperfections of the rocket. (2) The
launcher’s response must be such that the flight path of the rocket is
"nearer" the nominal (ideal) flight path than it would be if the launcher
had not responded. '"Nearness" to the nominal flight path at impact is
the most obvious measure of performance of such a system. However, if the
perturbed position and velocity of the rocket, at a time after burnout
sufficiently long for a basically steady-state to have been achieved, are
nearer their nominal values than they would be if the launcher had been
non-moving, then the launcher has been successful.

Consider as a specific example, a launcher/rocket system wherein the
rocket has a misaligned thrust vector and is spinning (but not spin-
stabilized) at EOG. To act as a passive controller, the launcher must
respond to the thrust misalignment during the usually very brief period

of time (say, 80milliseconds) encompassing the detent and guidance
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(including any tip-off) phases. Hence, a very short response time is
mandatory. Short response times of oscillatory systems are only achieved
if the natural frequencies of the system are high.

Secondly, the response of the launcher must be favorable. The
principal way in which thrust misalignment of a spinning rocket causes
dispersion is that the torque due to thrust misalignment produces a very
slow precession of the rocket's longitudinal axis (see Appendix D), and
since the thrust acts primarily along this axis, the rocket is driven in
the direction it is pointed until burnout. Aerodynamic torques on a
stable rocket reduce the rate of precession, but these torques are very
small at EOG. The rate of precession of the rocket can be reduced by
imparting a suitable angular velocity to the rocket while it is on the
launcher, 1If, in responding to the thrust misalignment, the launcher has
such an angular velocity, its response is favorable.

As to the potential of launchers to act as passive controllers,
one should first consider, in light of the above, the physical charac-
teristics of existing launchers.+ In doing this, some sort of classifica-
tion of launchers is required. For the present, launchers are classified
as light or heavy as compared to the rocket. That is, the mass of a
heavy launcher and its moments of inertia are much greater than those of
the corresponding rocket, while the mass and moments of inertia of a
light launcher are of the same order of magnitude (or less) than those

of the rocket launched from it.

‘One must also, at some point, consider the fact that some launchers
are mounted on vehicles. However, for the purposes of this report, the
motion of such vehicles is not considered.

| —_—
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If a launcher is heavy, even though it is supported with stiff
springs, its natural frequencies will be rather low, say 1 to 10 Hz.
Furthermore, the angular accelerations caused by the thrust misalignment
will be very small. Thus, unless some part of the launcher (a launch
tube, for example) can move relative to the main part of the launcher,
or the rocket itself can rotate, little passive control is foreseeable.
However, if rotation of a relatively small portion of the launcher with the
rocket is provided for, there is good reason to believe passive control
can be achieved with heavy launchers.

Imperfections in the rocket should produce enough motion of light
launchers for control to be implemented if the launchers are not very
firmly attached to the ground or to a substantially rigid body. 1In the
case of shoulder-fired launcher/rocket systems, the natural frequencies

of the launcher motion may be fairly low, so that large enough angular

rates are not produced by the imperfections; however, angular rotations

of several milliradians can be expected. Theoretically, these aim changes
can be used to reduce dispersion.

From the above reasoning, it is clear that some passive control
potential exists for suitably designed launcher/rocket systems. The
aim of this research effort is to determine qualitatively the degree of
this potential.

1.4 Scope of This Effort

As indicated, the objective of this research is not to design a
rocket/launcher system which is optimal in the sense that the dispersion
due to all random imperfections is minimized, but rather to determine

the extent to which such an ambitious task may be successful. To achieve
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this objective, the following steps have been taken: (1) Mathematical
models of launcher/rocket systems ranging from very simple to fairly
general have been developed or taken from previous work.®?? (2) Digital
computer codes incorporating some of the models have been written and
codes incorporating the other models have been modified. (3) The effects
of rocket imperfections, principally thrust misalignment, on the trajec-
tories of rockets, have been studied to determine the magnitude and
nature of the control required to reduce dispersion to a very low level.
(4) Methods of producing the required control have been developed. For
the most part, these involve choosing favorable launcher physical charac-~
teristics. (5) Typical numerical results have been generated which
illustrate that, at least theoretically, dispersion can be reduced.

In Section 2, ideal control of rocket flight paths by choosing
launch conditions - i.e., the state of the rocket at EOG - is considered.
Launch conditions which are produced by rocket imperfections are studied
in Section 3 by using several launcher mcdels, but no concerted attempt
is made to obtain "favorable'" conditions. The production of favorable
launch conditions is treated in Section 4. The "tuning" of the launcher,
or a sub-launcher, so that it responds to produce favorable launch
conditions, is treated in detail in Section 4, using the concept of "non-
linear frequency response'" of a launcher/rocket gystem. Conclusions are
stated in Section 5. Mathematical details are covered in the

appendices.




SECTION 2. IDEAL CONTROL VIA LAUNCH CONDITIONS

2.1 Introductory Comments

It is obvious that the only control a launcher can exercise is over
the rocket's state at EOG. The values of variables which collectively
define this particular state are referred to here as the "launch condi-
tions" and are linear velocity components, angular velocity components,
attitude variables (Euler angles) and coordinates. At EOG an imperfect
rocket generally has some non-zero transverse linear and angular
velocitles because certain imperfections have caused the launcher to
move. These are in addition to the linear and angular velocities caused
by non-rocket-specific random factors such as detent release. Random
imperfections in the rocket also generally cause changes in its attitude

and the position of its center of mass at EOG.

As stated in Section 1, the precessional part of the angular velocity*

of a free~-flight rocket which is produced by imperfections subsequent to

EOG is a major cause of dispersion. Hence, the way the transverse angular

velocity at EOG and that produced later hy imperfections interact is of
great importance. Because the dynamic pressure is relatively small at

EOG a small transverse linear velocity at EOG has a much smaller effect

on the rocket's trajectory than a corresponding angular velocity. Similar-

ly, aim changes (angular rotation) may propogate into significant trajectory

*

Nutational motion of a spinning rocket apparently has little effect
on its trajectory as long as its frequency is much greater than the
frequency of aerodynamically produced oscillations.




deviations; but, displacements of the rocket's center of mass at EOG are

of little consequence,

In the following subsections, typical numerical results are presented
and used to support the preceding statements. The results were obtained
using a computer code incorporating the simple six-degree-of-freedom free-
flight rocket model described in Appendix A. The data used, except for

thrust misalignment and dynamic imbalance angles, is listed in Table 1.

Table 1. Data for Simple Six-Degree-of-Freedom Free-Flight Model

Mass (kg) 113.5

I (kg-m?) 0.2712

1, (kg-m?) 94.313

Fp (Nt) 46720

s (M?) 0.01929

a (m) 0.1567 :

)
p (kg/m®) 0.00098 K
) C -0.4

X

o -4.0

20.

C 9‘C -0 5

m, "

Cy -0.5 1
P i

c ,C -2000.0 |
m’ n |
qQ r |

Initial Speed (m/sec) 61 i

Initial Spin Rate (rad/sec) 40 ﬁ
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2.2 Free-Flight Motion with Thrust Misalignment

Regarding the effects of thrust misalignment on the free-flight motion
of a rocket, two cases must be considered: (1) the rocket is essentially not
spinning and (2) the rocket is spinning, but not "spin stabilized." 1In the
first case, either the thrust misalignment must be very small inmagnitude, or
burnout must occur very shortly after EOG; otherwise, the angular rate acquired
after EOG will not be compensated for during detent and guidance. Inthe second
case, the transverse angular rate due to thrust misalignment which causes
most of the dispersion is the precession rate. In Appendix D, a rather
simple analysis is used as the basis for the conclusion that this precession
rate is generated during the first quarter of a revolution of the rocket
after EOG. Figures 1 and 2 show that this conclusion is valid even when

aerodynamic reactions and gravitational forces are present. The flight

ES .
path angle time histories shown in Fig. 1, for a_ = 0.001 rad and az = (0.0

y
until burnout at t=1 sec (solid curves) and for o.y = (0,001 only until the
rocket has rolled through m/2 rad (dashed curves), clearly show that after
the first quarter of a revolution of the rocket, very little additional
precession rate is generated by the thrust misalignment. Figure 2 provides

the lateral deviation time histories for both cases. They are very similar.

2.3 Free-Flight Motion with Dynamic Mass Imbalance

In this section, and in Appendix A, the very idealized case of

constant mass imbalance, mass and moments of inertia is considered. This

model may seem too idealized, but the results obtained are only used for

quantitative purposes. In fact, since the largest parts of the trajectory

f‘Def:mitioans of the flight path angles Y and ¥ , as well as other
variables, are given in Appendix A. v
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deviations occur during the first part of the trajectory, this idealized

model is actually quite good as a quantitative one.
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- TIME (seconds)

Fig. 2. Llateral deviation of rocket center of mass, yE, for c(.y = 0.001.

The effects cof dynamic mass imbalance on the trajectory of a free-

flight rocket are similar to those of thrust misalignment. Both types of
imperfection cause a precessional rate to arise very soon after EOG and
because of this rate, the rocket is driven off course during the thrust
period. Because of this similarity, results analogous to those already

given for thrust misalignment are given with little comment.
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For dynamic imbalance, as well as thrust misalignment, the preces-
sional component of the rocket's transverse angular velocity is
created during the first quarter revolution in spin of the affected
rocket. The flight path angles shown in Fig. 3 were obtained by using a
mass imbalance defined by uz = 0.001 and u3 = 0.

To obtain the dashed curves, the mass imbalance was ''magically"
removed when the rocket had rolled through 7/2 rad. These curves are
qualitatively the same as those in Fig. 1. The lateral deviation curves

shown in Fig. 4 are also qualitatively the same as those in Fig. 2.

(ft) (m)

0.00

-40.00
L

-80.00

Ye

-120.00

i

°160.00

.00 2.00 4.00 6.00
TIME (seconds)

Fig. 4 Lateral deviation of rocket center of mass, Vg for u = 0.001.
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2.4 Reduction of Trajectory Deviations by Imposing Suitable
Launch Conditions

By imposing suitable launch conditions, the values of the flight path

angles well after burnout can be made essentially zero. The lateral and

ST TaERSE AT R TEAmRnE = s 7w

vertical deviations can also be reduced.

- Generally, if transverse angular velocity exists at EOG, there will

L St

be some transverse linear velocity of the rocket's center of mass. How-

ever, this velocity will normally be small in magnitude. For example,

if at EOG, the launcher/rocket system is rotating with an angular rate
of 0.05 rad/sec about a point 10 ft. from the rocket's center of mass,

then the transverse velocity will have a magnitude of only 0.5 ft/sec due

to the rotation. Such small transverse linear velocities have little
effect on the trajectory. It is also rather obvious that the displacement
of the rocket's center of mass at EOG will not be large enough to produce
any significant change in its point of impact.

Since one-half of the rocket's state has been effectively eliminated
from consideration the remaining alternatives are to compensate by either
an attitude change or a change in angular rate. That is, to either make
the pitch and yaw angles at EOG as nearly equal to the negatives of the
"final" values of deviation in flight path angles or impose an angular
rate opposite in sign to that caused by thrust misalignment or dynamic
imbalance. The attitude change required to make ww=0 at burnout for the
thrust misalignment example of subsection 2.2 is obviously Ay = 0.010 rad.
Alternatively, the required angular rate is approximately 0.024 rad/sec.

The time histories of ww and Yg for the angular rate alternative are

presented in Fig. 5. Comparison of these modified histories with the ones
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in Figs. land 2 clearly shows that dispersion can be decrcased if the
required angular rates of the launcher, or sub-launcher, are produced by
the imperfections. In the next section, the possibility of getting a

launcher to respond significantly to the forces and moments caused by

thrust misalignment is investigated.




SECTION 3. LAUNCH CONDITIONS CAUSED BY ROCKET IMPERFECTIONS

3.1 General Comments

It was hoped that results for dynamic mass imbalance of the rocket
could be included in this report; however, such results are only now
being obtained. Therefore, in this and following sections only thrust
misalignment is considered as the "imperfection."

3.2 Idealized Launcher Model

The idealized launcher physical model used in this and later sections
is shown in Fig. 6. There are several reasons this model was chosen. The
first, and most obvious, reason is that it is geometrically simple.
Second, although it is geometrically simple, the model is general enough
that both pitch and yaw motions of the launcher are modeled. Third,

because the center of mass of the launcher, C lies at the pivot point, O,

L’
the bias effects of launcher mass are eliminated. Fourth, because the
launch axis (xL-axis) passes through the pivot point, the detent force
does not affect the launcher motion. Fifth, by considering the equations
of motion of the one-degree-of-freedom launcher/rocket system model in
Appendix B, one finds that the "torque" on the system due to the Coriolis
acceleration is destabilizing if the rocket is located behind the pivot
point and stabilizing if forward of that point. Hence, the idealized model
should be more sensitive to rocket imperfections. Therefore, the model
minimizes, to some extent, biases and at the same time is general enough

for use in this qualitative analysis of launcher motion caused by rocket

imperfections.

17
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Fig. 6 1Idealized launcher for nonlinear frequency response
analysis. (Unloaded equilibrium position)

Fig. 7 Launcher with pivot point forward and non-spinning
rocket; (a) linear thrust misalignment,

(b) combination.
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The launcher model is constrained so that it cannot roll about the
xL-axis. This constraint is imposed because of the desire to obtain a
precise roll angle at EOG. It may also be constrained in either pitch
or yaw, or both, thereby obtaining a single-degree-of-freedom launcher
or a rigid one.

Mathematically, the springs and dashpots shown in Fig. 6 are replaced
by torsional springs and dashpots at 0.

3.3 Effects of Thrust Misalignment

3.3.1 Non-spinning Rockets

If the rocket does not rotate while it is on the launcher, then the
thrust misalignment (if constant in direction) will result in a torque of
essentially constant direction about O and the launcher will respond by
rotating about that direction until the restoring torque of magnitude
exceeds the torque due to thrust misalignment are generated. The launcher
will then "rebound." Whether or not the launcher should be rebounding at
EOG is determined by whether the thrust misalignment causes the launcher
to rotate adversely, or proversely, as far as the free-flight effects of
thrust misalignment are concerned.

In Fig. 7(a), the rocket shown is acted upon by thrust misalignment
which will initially cause positive yaw of the launcher. Following EOG,
the rocket will also yaw positively. If the launcher rebounds prior to
EOG, then some decrease in dispersion will be achieved. Figure 7(b)
depicts a case in which the rocket's thrust vector misalignment is defined
by the angle az. This case is representative of a misaligned rocket nozzle.

The torque due to thrust misalignment will initially cause a negative
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rotation of the launcher and, since the rocket will yaw negatively at EOG,
the launcher should rebound if dispersion is to be decreased.

Rebound of the launcher during guidance requires it to be very stiff
if the guidance period is short. If the launcher cannot be made stiff
enough to rebound, an aft pivot point (see Fig. 8) will be worse if the
thrust is misaligned in the manner shown in Fig. 8(a). However, if the
misalignment is as shown in Fig. 8(b), then launcher motion due to thrust
misalignment will be beneficial. The misalignment defined by o, is,
according to the definition of Ref. 1 (pages 28-29), a combination of

linear and angular misalignment.

C

¢

to .fr/ 0
3 z

(a) (b)

Fig. 8 Launcher with pivot point aft and non-spinning
rocket; (a) linear thrust misalignment,
(b) combination.
A mathematical model representative of launcher/rocket systems in
which the rocket does not rotate on the launcher has been developed.
However, the computer code which incorporates this model has not been

checked out sufficiently to present results at this time, but they will

be included in the final report.

|
:
|
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3.3.2 Spinning Rocket

When the rocket rotates with respect to the launcher during guidance -
for example, as it does if helical rails are usged to impart spin - then the
thrust misalignment will generally rotate with the rocket. It is assumed
here that this is the case.

Assuming a forward pivot point for the launcher, Fig. 9 depicts the
thrust misalignment force, ETM’ and the thrust misalignment torque, ETM’
due to a "combination" thrust misalignment defined by ay#O, az=0. For a
roll angle between 0 and T/2, there is a negative pitching moment about
the yE-axis. For roll angles between 7/2 and 7, the thrust misalignment
generates a positive pitching moment. During the entire rotation from
0 to m, a negative yawing moment is generated. If EOG occurs
when the roll angle (say ®) is 7, the rocket, according to the theory
presented in Appendix D, will yaw positively due to the thrust misalignment.
It follows, that if the launcher has a low enough frequency that no
rebound occurs, or if it has a high enough frequency that more than one
cycle is completed by EOG, some benefit should be derived from the
launcher motion.

The more general model of a rocket/launcher system was used to
generate some time histories of launcher motion. The launcher moments of
inertia and launcher natural frequencies were varied to determine the
effects of these parameters on launcher motion. The model of the rocket
used is described in Appendix B. Physical data for the system is given in

Table 2 and the aerodynamic data appears in Table 3. The model of the rocket

has essentially the same characteristics as that used inRef. 8, with the
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Fig. 9 Rotating rocket on launch

er; (a) roll angle of 0;
(b) roll angle of m/2 rad

i (c) roll angle of 7 rad.
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Table 2. Physical Characteristics of the More General Launcher/Rocket

vy

Model.

LAUNCHER

Mass (kg) 146.

Inertia Matrix (kg-mz)

"small" inertia case

0.542 0 0
0 54.24 O
0 0 54.24

"intermediate" inertia case

[0.542 0 0
0  108.48 0

.

0 0 108.48
"large' inertia case

[0.542 0 0

0 216.96 0
0 0 216.96

Damping Ratio 0.1 all axes

Detent Force (Nt) 817

ROCKET

Initial Mass (kg) 113.35

Initial C.G. (m from nose) 5.84

Burnout Mass (kg) 76.08

Burnout C.G. (m from nose) 3.48

Inertia Matrix (kg-mz)

Initial
[0.40 0 0
0 93.12 0
L0 0 93.12j

At Burnout

[0.26 © 0
0 39.3 0
0 0 39.3

Thrust Time Variation

Time (sec) Thrust (Nt)

0 0

0.05 0

0.0647 667.4
0.0794 6766.4
0.0912 7050.0
0.1147 6943.0
0.1400 6943.0
0.7014 12204.0
0.9585 11663.0
0.9944 267.0
1.1000 6]




ro
o~

Table 3. Aerodynamic Data for the More General Rocket Model.

Reference Area (mz) 0.01923 Reference Length (m ) 0.157

Length (m) 3.5

‘ Mach No. Cy Cm Xp (m from nose)
q
4
7' 0.0 4.41  ~1460 1.876
' 0.4 4.24 ~1540 1.722
g 0.6 4.12 ~-1610 1.628
; 0.8 3.95 ~1730 1.457
' 0.9 3.80 -1780 1.408
1.0 3.58 -1780 1.384
£ 1.1 3.84 ~1730 1.378
| 1.2 4.07 -1660 1.378
f 1.4 4.41 ~1560 1.423
1.6 4.61 ~1460 1.469
4 1.8 4.70 -1380 1.512
1 2.0 4.76 -1300 1.533
‘ 2.2 4.71 -1230 1.548
2.4 4.67 -1170 1.533
2.6 4.54 -1120 1.487
3.2 4.41 -1010 1.298
:
4
Mach No. C
b3
?" 0.00 0.425
' 0.80  0.328
0.90 06.310
0.95 0.305
1.00 0.330
1.10 0.403
1.20 0.381
3 1.28 0.373
1 1.50 0.372
2.00 0.340
2.50 0.299
3.00 0.262
3.50 0.231
4.00 0.205
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exception that the center of pressure position is moved aft to provide
more static stability. The rocket is spun up using a helical rail so that
for the non-tip-off cases QEOG = 7. A spin rate of approximately 14 Hz is
generated during a guidance length of 1.219 m.

The launcher motion time histories shown in Figs. 10 through 15 are
actually perturbations in launcher motion due to thrust misalignment,
To obtain them, two integrations were performed, one with no thrust mis-
alignment and one with ay = 0,01 rad and a, = 0. 1In all cases, the
rocket's center of mass is 1.323 m aft of the pivot point at ignition.
The thrust is modeled as acting at a point 1.947 m aft of the initial
center of mass. Hence, the initial moment arm for the thrust misalignment
is 3.27 m,

Figures 10 through 15 are arraigned in three groups according to the
value of Wine There are two figures in each group. In each figure, three

curves are presented, one for each of the three moment of interia values

used. For the "small" launcher case, the pitch and yaw moments of inertia

of the launcher about O are 54.236 kg-m". For tne "intermediate" and
"large" inertia cases, the moments of inertia are respectively two and
four times 54.236 kgm®. For w = 5 Hz (Figs. 10 and 11), the launcher
responds without rebounding. For the higher frequency values, “n = 20 Hz
(Figs. 12 and 13), P 30 Hz (Figs. 14 and 13), the launcher aiways
rebounds in pitch, but not necessarily in vaw. As expected, an increase
in the inertia of the launcher results in a decrease in the magnitude of

the corresponding response.

Notice that the magnitudes of the launcher rotations at EOG for

ot 5 Hz are large. Also, the time rates of change of ‘u, and Aa3 are
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Fig. 10 Launcher pitch angle deviations for Yt 5 Hz.
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Fig. 11 Launcher yaw angle deviations for Wo T 5 Hz.
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Fig. 12 Launcher pitch angle deviations for W, = 20 Hz.




Aa, (milliradians)

29
A "small" inertia

O "intermediate" inertia

[J "large" inertia

o
S
(-]
o -
1
o
-
]
~ ] 0
|
N
e 7 A
[ =]
. T T T 1 T
Y 000 0.04 008 012 016 0.20
TIME (seconds)
Fig. 13. Launcher yaw angle deviations for wLn = 20 Hz.




Aa, (milliradians)

A vgmalnm inertia

O ‘'intermediate" inertia

1.6

. (0 "large" inertia

0.8

0.0

q’ 1 I ]
0.0 0.04 0.08 0.12 016
TIME (seconds)

Fig. 14 Launcher pitch angle for deviations for W= 30 Hz.
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SECTION 4. PRODUCTION OF FAVORABLE LAUNCH CONDITIONS

4.1 Present Approach - Nonlinear Frequency Response

The equations of motion of a launcher/rocket system are nonlinear.
Under certain conditions, they may be approximated by linear equations
with variable coefficients as is done in Appendix E. However, solutions
to even such simplified equations can generally be obtained only by
numerical methods. Furthermore, because nonlinear terms in the equations
may possibly be as significant as those due to rocket imperfections, the
safest approach is to numerically integrate the full nonlinear equations
to obtain the dynamic response of the system.

Measures of how well the launcher acts as a passive controller are
considéred to be the lateral and negative vertical deviations of the
rocket's center of mass and the flight path angles, Y and ww’ at a time
after burnout when an essentially constant value of ww has been achieved.
The deviations, or perturbations, in these variables at this somewhat
arbitrary time are AYf, AZf, Ayf and Awwf. They are defined with respect
to the nominal trajectory which the rocket flies when there is no thrust
misalignment.

Results are given in the next two subsections for two launcher con-
figurations, one non~tip-off and one tip-off. 1In all cases, the rocket
was spun up via helical rails so that ¢EOG = 7 and the spin rate at EOG

was 14 Hz. Furthermore, the "small" inertia case (see Table 2) was

considered.
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4.2 Non-Tip-Off Launcher Results

4.2.1 Nonlinear Frequency Responses

By varying the frequency of the unloaded launcher from 5 to 50 Hz,
the frequency responses shown in Figs. 16 and 17 were obtained. The
time at which the deviations were computed corresponds to a range of 2133
m and is about 1.8 sec after burnout (tBO = 1.1 sec). For the frequency
response computations ay==0.01 and az = 0. Note that ay is fairly large.
Effects of the randomness of actual thrust misalignment are considered
shortly.

There are two frequency bands within which the launcher acts as a
passive controller. These are centered about 5 and 36 Hz. The frequency

band centered at approximately 36 Hz is theoretically the best, but would

dictate a very stiff launcher. The responses at frequencies in the lower
band,centered at about 6 Hz, are not as favorable, but still a reduction

of VAY52+NK? by more than 50 percent from a rigid launcher value of

32.44x107°% is possible. AYf and AZ_ are also reduced significantly if

f

the launcher frequency is 6 Hz.

4.2,2 Effect of Randomness of Thrust Misalignment

Because only a single thrust misalignment was used to obtain the
above frequency responses, there is no guarantee that for a different
misalignment passive control will be achieved at the same frequencies
for an arbitrary thrust misalignment. To verify that the thrust mis-
alignment direction has little impact on the effectiveness of the launcher,
the thrust misalignment direction was varied to obtain Figs. 18 and 19.

The launcher natural frequency of 36 Hz was used but the results are

similar at other frequencies. The Aww curve is essentially periodic in
f
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§, the thrust misalignment direction angle. The AYf curve is not as well-
behaved because of gravity effects, but is basically periodic also. These
results and those for the center of mass displacements indicate that re-
gardless of the thrust misalignment, for certain launcher frequencies
considerable passive control is achieved.
"Good" and '"bad" case time histories of Ay and Aww are shown in

Figs. 20 through 27. Figs. 20 and 21 are for w n 36 Hz and represent the

L

"good" high-frequency case. These should be compared to Figs. 22 and 23
for W = 30 Hz, which are representative of a "bad" high-frequency case.
An order of magnitude reduction in the final flight path angle is evident.
Some "good" low-frequency (an = 5 Hz) results are presented in Figs 24

and 25. The reduction in Ay from 32.44 x 1072 rad to about 13 x 10™° rad
£
is certainly significani. Dynamic coupling results in a larger AYf than

that for a rigid launch, but VAYg-+ Aw;f is stil]l reduced significantly.
f
That the motion of the launcher in response to rocket imperfections can be

detrimental is clearly shown in Figs. 26 and 27 for a "bad' low-frequency

case (W, = 10 Hz).

LN
4.3 Tip-0ff Launch Results

The tip-off launcher configuration is the same as the non-tip-off
configuration except, after the 1.33 m of guidance on helical rails,
0.3048 m of guidance with tip-off is modeled. The nonlinear frequency
response curves analogous to those in Figs. 16 and 17 are presented in
Figs. 28 and 29. The tip-off launcher response curves are noticeably
different from the non-tip-off curves. Some passive control effectiveness
is present at high frequencies around 36 Hz. At lower frequencies near 6 Hz,

the dispersion, as measured by the aforesaid deviations, is greatly reduced.




(Milliradians)

Ayf and AY

30

20

10

-20

—O— v
M OL Mf
Ay = -0.28x10" % rad

= -32.44x1h"? rad

w. -, Launcher Frequency
Ln
(Hz)

Fig. 16 Nonlinear frequency resp-

onses, 4y, and M., for
f w

non-tip~off launcher.




(ft) (w) 36
201
- 5
10 4
(0] + + =
10 20 30 30 w. , Launcher Frequency
Ln
(Hz)
-~10 -
- -5
——  BY,
-20 4
O AZf
5"-30 -
AY = 157.37 ft
E - -10 rigid
u-: Az = 2.341 ft
3 rigid
-40 A
ay = 0.01
a =0
z
-50 {13
-60 J Z}
20
-70
~-80 -
Fig.1l7 ©Nonlinear frequency responses, AYf and :,Zf, for non-tip-off launcher. 7




10

>
1

(radians x 107")
N
1

f

37

VW = 0.0l rad

= 36 Hz
n

“L
—\ Ayf

—_— A‘i’wf

Ay P and Albw
o

!
N
1

o Saaen : alli

Fig. 18 Effect of direction of thrust misalignment, AYf and Aww .

sn/4 3n/2

8 (radians)

6
b4 ETM

f




o

—

(ft)

o~

AYf and AZf
AN

38

(m)
-4 = "/2
QEOG /
A wLn" 36 Hz
- N AV AYf
—_—— AZf
= 1

1 b

Fig. 19 Effect of direction of thrust misalignment, AY

77/4
8§ (radians)

st/4 21/

y

¢
y Fm

and AZf-

£




AY(radians) x 10

39

-

0.10

0.06 0.08

0.04

0.02

.00 0.80 1.60 2.40 3.20 4. 00
TIME (seconds)

P00

Fig. 20 Flight path angle deviation , .y, for non-tip-off
launch — wL = 36 Hz.

i




Ay, (radians) x 100

40

0.06
.

0.02

-

-0.02
1

-0.06

"0.10

0. 14

.00 0.80 1.60 2.40 3. 20 4.00
TIME (seconds

Fig. 21 Flight path angle deviation, ‘."w‘ for non-tip-off
launch - “La = 316 Hz.




X 10

-

0.12

AY (radians)

-

0.04

P00

.00

Fig. 22

-
1.60

Flight jath deviation,

[

=

3N Hz.

—r —
2.40 3.20

TIME (seconds)

for non-tip-oft launch

L
4.00




A%, (radians) x 100

42

-0.04

-0.20 -0.12

-0.28

-0.36

o.uy

0.00 0.80 1.60 2.40 3. 20 4.00
TIME (seconds)

Fig. 23 Flight path angle deviation, _';‘.»w, for non-tip-off

launch — . = 30 Hz.
Ln




AY (radiané\) x 10

=

o

O

1

[9V)

wm

o

1 1 1 X! 1 A
0.00 0.80 1.60 2.40 3.20 .00

TIME (seconds)
Fig. 24 Flight path angle deviation, v, for non-tip-off
launch — 1a 5 Hz.




44

-

0.15

g.11

0.07

Ay, (radians) x10
0.03

-0.01

0.05

L ) ] ui i
0.00 0.80 1.60 2.40 3.20 .00
TIME (seconds)

Fig. 25 Flight path angle deviation, A;w, for non~tip-off

launch — v = 5 Hz.
L Ln

oy e

o




45

0.32

0.24

0.16

J

AYw lradians) x 10

0.08
i

0.00

0.08

.00 0.80 1.60 2,40 3.20 4.00
TIME (seconds)

Fig. 26 Flight path angle deviation, &%, for non-tip-off

launch — » = 10 Hz.
Ln




-0.09

-0.17

Avw,, (radians) x 10
L

-0.25

-0.33

|

0.41

0.00 0.80 1.60 2.40 3.20
TIME (seconds)

Fig. 27 Flight path angle deviation, 4y , for non-tip-off
w
launch — ‘*\Ln = 10 Hz.

-
.00




40

30

20

@ 10
=1
<]
oyt
©
2]
|1
H
-
—
=t
=]
S’
Gl
32
>
<]
L) “10
=1
o]
Ul
>—
<

-20

~-30

-40

-50

Fig,

-

—A— Ay

—O— _“‘.“f

16x10” %rad

3

-26x10 ° rad

28

Monlinear frequency responses, LY

f

and A,

f!

Launcher Trequency
(Hz)

for tip~off launcher.

idadn a-n-l-llliu-hnuuli‘




AY
¢ and AZf

(ft) (m) 48
2
60 -F“O
A
~10
20 —0O~— 4Z¢
A 10 20 30 40 50 “Ln
-20 4
-10 Launcher Frequency
LQ) (Hz)
0
-60
20 AR A
0
A
-100 730 W
Q A
}—40
O
-140 A
-—50 T
-180 - ° C)
r—60
() AY = =173 ft(-52.73 m)
rigid
-220 4 Q) C) AZ = ~112 ft(-34.14 m)
= _70 rigid
O J,y = 0.01
=260 —4)_ -80 lz =0
/\ )
-300 4 ~90
- ~100
=340 - A /N

Fig. 29 Nonlinear frequency responses, AYf and AZf, for tip-off launcher.

S 4



49

"Good" and 'bad" case results analogous to those previously given
for the non-tip-off launcher are presented in Figs. 30 through 31. "Good"
high-frequency results for Ay and Aww are shown in Figs. 30 and 35,
respectively. 'Bad" case high-frequency results follow in Figs. 32 and
33. "Good" low-frequency time histories of Ay and Aww are presented in
Figs. 34 and 35, respectively. Corresponding '"bad'" case results follow

in Figs. 36 and 37. From these results it is apparent that the launcher

can significantly decrease or increase dispersion.
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small at EOG. Hence, control in this frequency range is primarily "aim-
change' control. At the higher frequency value of 30 Hz, the control must
be achieved by imparting angular rates.

At this point, it is emphasized that if all the launcher rotation
and/or angular velocity due to rocket imperfections are in the proper
directions, benefit is gained from launcher motion. However, if some are
in the incorrect directions, the launcher motion may be detrimental.
Whether or not the launcher motion is detrimental depends upon the signs
and magnitudes of the launcher motion variables at EOG.

The choice of launcher parameters which will result in launcher
motion that is beneficial is not obvious. Some of the most critical
parameters are the natural frequencies of the unloaded launcher. In the
next section, a method is described which can be used to determine launcher

natural frequencies that result in positive passive control.




SECTICN 5. CONCLUSIONS

The interim character of the report makes it inappropriate to state
any final conclusions. One conclusion which can be safely drawn, however,
is that theoretically launcher/rocket systems can act as passive con-
trollers which reduce dispersion by fifty percent or more from the ''rigid
launcher'" value. The extent to which such control can be achieved in
practice depends on several factors. First, the natural frequencies of
launchers are usually fairly low. This is sometimes due to the massive-
ness of the structure of the launcher and sometimes due to the fact that
it is fairly flexible (e.g., a pylon on a helicopter). The results pre-
sented in this report are evidence that launchers with relatively low
natural frequencies can provide significant passive control, if a second
factor, that of '"massiveness," does not nulify the responsiveness of the
launcher. 1If the launcher is much more massive than the rocket, the
small forces and moments due to rocket imperfections will not produce any
significant motion. This was illustrated in Section 3. Without launcher
motion, there can be no passive control.

It has been shown that interaction of launchers and imperfect rockets
may be favorable or unfavorable. Hence, another conclusion which is
clearly valid is that the only way to predict the accuracy of a launcher/

rocket system is to simulate the entire system from ignition of the

rocket's motor until the effects of all errors modeled are apparent. Such
simulation results would be used in designing launchers which provide

passive control to the extent possible within physical constraints.
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APPENDIX A
SIMPLE SIX~DEGREE-OF-FREEDOM

FREE~FLIGHT MODEL

Purpose and Physical Description

The purpose of this model, in the context of this report, is to
provide a means for determining, qualitatively, the effects of thrust
misalignment, dynamic imbalance and launch conditions (angular velocity
about the rocket's center of mass and linear velocity components of the
rocket's center of mass at EOG) on the motion of a free~flight rocket
which is also acted upon by atmospheric forces and moments and the
intended thrust.

"simple' one in that the

The physical model of the rocket is a
following assumptions are made:
1. The rocket is rigid with constant mass and moments of inertia.

2. The thrust is either a nonzero constant value, or zero
(after burnout).

3. The aerodynamic coefficients are. constant with respect to
Mach number.

Although the above assumptions are not necessary (indeed, they are
not incorporated in the more general launcher/rocket system model
described in Appendix C) the motion of the physical model based on them
is mathematically modeled very easily and solutions to the equations can
be obtained very rapidly via numerical integration.

Mathematical Description

The mathematical description, or mathematical model, consists of

equations for the translation and rotation of a dvnamicallv unbalanced
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geometrically symmetric, rigid body which is moving under the influence
of eccentric thrust, aerodynamic forces and moments, and the force due to
gravity (flat earth assumed). Motion of the rocket is referred to an

earth-fixed dextral, cartesian reference frame Ox_v (see Fig. A.1).

z
E'E"E

The coordinates of the center of mass C of the rocket are Xps yE and zE.

The reference frame Cxyz is fixed in the rocket with its x-axis collinear

with the axis of geometric symmetry of the rocket. The velocity of C and

the angular velocity of the Cxyz frame are expressed in the forms,

<
|

C i vl (a-1)

and

w=pi+qj+rk, (A-2)
respectively, where the unit vector triad (i,j,ﬁ) is fixed to the Cxyz
frame. The orientation of the Cxyz frame is defined by using the Euler

angles , 5 and ¢ in the usual "flight dynamics" 3-2-1 sequence.

Required kinematical equations for translation and rotation are

}EE u
e | = ¢t |v| (a-3)
;o .
where+
1 0 0 =€ 0 -st c. S. 0
C= 10 ¢y s 0 1 0 S. c. 0 (A-%)
0 =-st ct s3 0 ¢ 0 0 1

‘For compactness, the definition ¢( ) = cos( ) and s( ) = sin( ) are
used.

| >




5 1 tangsp  tanic) p
¢ =10 cd ~s9 qi , (A-5)
» 0 sz/ct  cdles r

respectively.

N\

Witin

\\

=

» ©

Zg

Fig. A.1 Coordinate frames and Euler angles.

The usual notation for body-fixed components of aerodvnamic force

is adopted to write the kinetic equations for translatioan in the forms,

m[& +qw - rv] = X + FT - mg sing, (A-6a)

m[; +ru - pw) =Y + FT , + mg cos® cosg (A-6b)
and

m[; + pv - gqu] = Z - FT 1y + mg cos? cos:, (A-6¢)




where m is the rocket's mass, X, Y and Z are the aerodynamic force com-
ponents, F.. is the thrust magnitude, ly and 12 are thrust misalignment
angles (see Fig. C.3), and g is the magnitude of the gravitational

acceleration. Furthermore, the x~, y- and z-components of the aerodynamic

moment about C are denoted by I, Y and Y, respectively; the rocket's

centroidal inertia matrix is denoted by I; and ; is defined as

tee
l
a1
o
[
el

(a-7)

so that the kinetic equations for rotation can be written in the form,

P P z 0
O = - + v + -1 T s (a-
1 q ~114q c yFT (A-8)
-, ~ F
t r ! ¢z’ T

where ZC is the distance fromC to the point of intersection of the thrust
with the x-axis.
The aerodynamic force components are conventionallv expressed in

terms of the coefficients Cyo Cy and € s i.e.,

X = 1/205v2cx, (A-9a)

Y = 1/2psv2cV (A=9b)
and

Z= 1/2;sv2cz , (A-9¢)

where  is the atmospheric density, S is the reference area used in

obtaining Cx’ Cy and CZ and V° = V*V (no wind assumed). 1In this model,




Cx = constant , (A-10a)
C =C &+ r(d/2v) (A-10b)
Y y-
3
and
Cz = _CN_ 4y (A-10c)
vl
where = = sin-l(v/v); d is the characteristic distance associated with
the aerodynamic coefficients; and « = tan ' (w/u). The stability de-

rivatives, C_ , C and CN are constants in this model.
5 Yr : —_—
The aerodynamic moment components can also be expressed in coefficient

forms; i.e.,

o= 1/2psv3dc2 (a-1la)

oy o= 1/2,;SV2de (A-11b)
and

;= 1/20svidC_ (A-11c)

where (in this model),

CL = Cl p (d/2v) (A-12a)

|%
= Ny i -172%

cm cm.x + Cm q (d/2v) (A-12b)

* q
and
C =C 24+C r (d/2v) (A-12¢) ’
n n, n. g

with ¢, , C_, C , Cn and Cn all constant.
P 9 : 3

Flight Path Deviations

Deviations of a free-flight rocket from its intended flight path
after burnout, but before impact, can be defined in terms of the location

of the rocket center of mass a given time and its velocity at the same ]




defining

t are

and

The
angles

in terms
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time. Let the subscript n denote the value of a variable which is used in

the nominal trajectorv and let a variable without such a sub-

script be a 'perturbed'" variable. Then, at time t, the position deviations

if

xE(t) - xEn(c) , (A-13a)

= yE(t) - Y (t) (A-13b)

(Al3c)

4
“E
Fig. A.2 Flight path angles.

velocity derivaticns are best defined by using the flight path

Rl 1

and ‘v illustrated in Fig. A.2. From geometry, one mday wrice V

of earth-fixed unit wvectors and EE as follows:

&E’ QE
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V= Vcosycos;w }E + Vcos?sin;w jE ~ Vsiny EE , (A-14)

so that (see Eq. A-4),

(A-15a)

tany = yE/xE .
and
siny = - éE/v . (A-15b)

The velocity error can therefore be defined in terms of the deviationms,

AV o= v(t) - vn(t) (A-16a)

Ly = v(r) - Yn(t) (A-16Db)
and

S SO 2y (t)
n
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APPEUDIX B

SIMPLE LAUNCHER/ROCKET SYSTEM

MODEL

Model Description

The simplest phvsical model of a launcher/rocket svstem whicii can

be used to study passive control characteristics of a launcher is shown
in Fig. B.l. It consists of a launcher model which is a single rigid
body with one degree of freedom (rotation about the fixed point 0)

and a rigid body (constant mass and mement of inertia) rocket model with
one, or two, degrees of freedom with respect to the launcher. The
relative degrees of freedom of the rocket are translation and, during
tip-off, rotation in the xLyL—plane. Frictionless (except for launcher
damping) motion in a horizontal plane above a flat carth is assuned.
Motion of the launcher is restrained by a torsional spring and torsicnal

viscous damper.

The OxEyE coordinate frame shown in Fig. B.l is nonrotating. wihile
the OxLy frame rotates with the launcher. 1Yf there is no tip-ofi, tie

L
rocket is allowed to move onlv in the xL-direction. Alse shown in rig. B.l

are the following: The thrust, FT: the small thrust misaliznment angle.
3 the xL-coordinate of the center of mass, €, of the rocket, XC: the
distance from the rocket center of mass to the poiat of application or

thrust, iC; the launcher vaw angle, :L; and tl.e launcher-{ixed unit

vectors, i, anad jL.

L




o

Fig. B.1 Simple launcher/rocket svstem model.

Svstem Equations of Motion ~ Rocket con the Launcher

When there is no tip-off, translation of the rocket along the launcher
!

is governed by the equation, a
i
mr. = E, (B-1) i
; where m is the mass of the rocket, EC = XCiL and F is the external force.

The xL-component of Eq. (B-1) is

—_— T

m('iC - ?; xc) = FT (if detent released). (B=-2)

Rotational motion of the system about 0 is governed bv the cquatic-,

; (B-1)

where BO is the system angular momentum and TO is the torque, bhoth about *

0. Explicitly, when there is no tip-off,
4

= + 2 : Lz , s
50 (IL IT + m xC ) LR (B=4)
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and r_ are collinear. 1In Eq. (B-4), I  is the moment of inertia

since r L

C

of the launcher about 0 and IT is the moment of inertia of the rocket
about a transverse axis through C. The torque IO is due to the launcher

spring and damper and the thrust misalignment; hence,

T+ +rmx DV 1= [~Y - C YV o+ a
[+ +omx D3 T = DK = Gy ta

)

d . -
- X -« ) F . {b->
dt ¢! (5=3)
In general, the rocket is constrained from translating aleng che
launcher until the thrust has built up to a sufficiently high value.

During this "detent phase,'" Eq. (B-5) holds with e constant.

: 3 Al "oy oy -
Fig. B.2 Tip=oif geometry.

If tip-vff of the vocket as it leaves the launcher is to be seodelod,
rotaticn of the roowet relative to the launcher must be allowed. o

-

this case, Jurine tip-oot,

r_o=x_ 1+ i, (D=n)
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where xp is the xL—coordinate of the point about which relative rotation
occurs, : is the distance from P to C and i is a unit vecror aleng the
longitudinal axis (x-axis) of the rocket. Let : dencte the total vaw
angle of the rocket (see Fig. B.2) and L%=%~¥L and assume that o and :

are small angles. Then,

r. = a l\ + a 3 s (5=7)
=C x = , 2
YL L YL
where
a =X - Lx - il (3-3a)
XL p P
and
= Wox o+ iDo4 20 % -iiiieo B-3b
ayL L% L5 ( )

By equating components of m%c to corresponding components of the force

which acts on the rocket, the following two equations can be obtained:

m aXv = FT (3-9a)
L
and
= + Y - B-9
m ayL (Az )FT FC ) {B-9b)

where FC is the yL-component (and the only component) of the constraint
force which causes point P to remain on the xT—axis.

The rotational motion of the rocket is goveraned bv the eguatien,
I.:==-F - O F_ « (B-10)

while the larncher equation of moticn is

Loi = Forg = K& = Co. (B-11)




From Eg. (B-9),

F = - mna + (x + J9H)F_ . (B-12)
v z T

Equation (B-12) can be used to eliminate F. from Eqs. (B-10) and (B-11)

and therebyv obtain the results,

L7 = -m:ayL+[(uZ+ L) imign I (B-13)

and

1%, = =K. ¥ = C & + xp[—ayLm + (qz + LO)F ] . (B-14)

From Egs. (B-13) and (B-14) it follows that

(I, + o) ¥+ meC§L = —2mi§P;L + tmoovit
+ [+ 52Y) i=i_ 1 )T (B~15)
2z C 2 T
and
I, + mXP:)?L Tomxp A _2mXP;P;L
s LVEAY - Ro¥ - €%
MRS T L'L T OLL
Fo( o+ AU)X . Fo16)
+ (xz £ )\P FT (B-16)
The required equations of motien are (B-9a), (B-15) and (3-16).
Obviously, Egs. (B-15) and (B-16) must be solved for i, for use in Egs.

L
(B-8a) and (B-9a) to get &P-

Svstem Equations of Motion - Free Flight

For the purposes of tnis report, the motion of the launcher after
the rocket leaves 1t is not of principal importunce. Thus, only equaticn

~

of motion for a very simple rocket model are given here for the free-

flight phase. The rockct is assumed to wove in a horizontal plane and to
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rotate only in vaw. It is also assumed that burnout occurs very soon after
the beginning of free flight so that the rocket's mass and transverse
moment of inertia can be considered constant. Furthermore, the sideslip

angle Z (see Fig. B.3) is assumed to be small.

o

Xg

Fig. B.3 Sideslip angle.
The velocity of the rocket's center of mass C is
Vo=ouit v, (B~17)

where i and i are body-fixed (with regard to rotation) unit vectors. The
angular velocity component of the rocket about its z-axis is r and the
x- and y-components of the aerodynamic force are X and Y, respectively.
The translational equations of motion of the rocket are
m(u - vr) = X + F (B-18a)
and

m(v + ur) = Y + o F (B-15b)
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The rotational equation of motion is
r = N/L. - % . F /1 B-19
ro= N/Tp - oa L E T (8-19)
where N is the z-component of the aerodynamic yawing moment.

In addition tc Eqs. (B18) and (B-19), the three kinematic equaticns

are needed. These are, if ¥ is small,

XE = u, (B-20a)

§E = v + Yu (B-20b)
and

i =r . (B-20c¢)

A

Both the sideslip angle and W the lateral flight path angle, are
nceded. The former to determine aerodynamic {orces and moment and the
latter to determine the angular derivation of the velocity vector of the
rocket. Since it is defined by the equation, 3 = sin '(v/!V;), 2 = v/u
and

= v/u - uv/u- . (B-21)

(3R]

Hence 2 can be used in place of v. It can be shown using Egqs. (B-13),

the definition of & and Eq. (B-22) that, for B<<<l,
P r -(X + FDA/(mu) + Y/ () + o Fo/(mu) (B-22)
The angle ?w is given by the equation,
Yo=Y+ 8. (B-23)

The aerodynamic force components are given by

X =1/2 osvzcx (B-24a)




and

i Y = 1/2 ,osvzcy , (B-24b)

where ¢ is the atmospheric density, S is the aerodynamic rerference area
and C and C are aerodvnamic coefficients., 1In this model it is assumed
X y

that C 1is constant and that
X

c.=C £+ CV r{d/(2V)] (B-25)

y YS Y.

where C and C are constant and d is the characteristic distance

Vg v,

associated with the aerodynamic coefficients.

The aerodynamic yawing moment 1is
N =1/2 psvid C_, (B-26)

where the yawing moment coefficient Cn is assumed to be given by the

equation,

c_ = cngs + cnrr[d/(zvn. (3-27)

In this model, C and Cn are assumed to be constant even though in
n
8 r

actuality they vary due to center of mass and center of pressure motion

R

within the rocket.

Nondimensional Equations - Rocket on the Launcher

-wr -

Because a3 solution to nondimensional equations represents a family

R

of solutions to dimensional ones, nondimensional equations are desirable.

If the nonlinear terms involving %L and, in the tip-off equations, those

T rt. e e kL

t, %  and : are neglected, equations

involving products and squares of ?L’ L

which do not contain ., may be obtained by defining
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Vo= /g B-28a

. 'L/ . ( )
and

Vo= Yl (B-28b)

The nondimensional time,

1= t/t¥x (B~29)
Here,

t* = »/ZmL/FT s (B-30)

max
where FT is the maximum thrust magnitude and L is the guidance length.
max

The independent variable, T, may be introduced along with the dimensionless
variables given in Table B.l to obtain nondimensional equations. Table
B.2 contains definitions of nondimensional parameters.

For the guidance phase,

i(r)?{ + (¢ + Xu) @i + k@L = (x - Zc)f(r) , (B-31a)

u' o= 2£(3) (if detent released) (B-31b)
and

x'=u, (B-31c)

where i(?) = ET + IL + §2/2

for the tip-off phase, if present, the nondimensional equations are
(1

T2 1Ay - 7 T v/
T + L°/2)4 +(AP./2).L XP.Q,\’L

+ [(1 + A9 - Ec]f(r) , (B-32a)
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Table B.1 Nondimensional Variables and Functions

Dimensional Variable Divisor Nondimensional Variable
or Function or Function
FT(t) FT £(1)
max N
I(t) 2mL? I(T)
r o /t* r
z
u,u_,u L/t* ﬁ,ﬁc,ﬁp
v L/t* v
- L £
Xq xC(O) 3
, L X,y
*g*Yg E’E
L -
*p *p
3) o, B
Yoy c vy v
.Lay,\yw uz .L \P’\«w
d( )/dt 1/t% d( Y/dt = ()"

Table B.2 Nondimensional Parameters
Dimensional Parameter Divisor Nondimensional Parameter
2mL?/t*

cL /t

d L d

IL’IT 2mL IL T

X F

K p b ‘
max o

Q.,lc L L,xc

m cSL u

TR L TR T TR e Y, -

v

P
b




((B-32b)
ué =2 £(1) (B-32c)

and
XI" = uP . (B-32d)

Nondimensional Equations - Free Flight

For the free-flight phase, it is assumed that the thrust is equal to

F (i.e., £(T) = 1) until burnout, after which it is, of course, zero.
max ?
Until burnout, the nondimensional equations are :

a' =2 +(1/2m)C_ u?, (B-33a)
Bt = - ~[2/u + 1/(2u)C uld
+ 1/0 + 1/<2p>{cy 5+ cy r(d/2)/alu , (B-33b)
r
\_1‘}' - ; . (B-33d)
Eé = u (B-33e)
and
;’p': =T +B) =u ?w (B~33f)
After burnout,
u' = (1/20C u? (B~34a)
Er = -F -1/(2wC uB
+1/Qwic & +c r@@/2)/ulu , (B=-34b)
Y3 Yr
o= aumrncn g+ c_ (r/u)d/21u’ (B~34¢)

A
= r

and Eqs. (B-33d) through (B-33f) are still valid. ;
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Comments on the Equations of Motion

The dimensional equations are nonlinear and no exact closed-form
solution to them has been obtained. If one chooses f(T) to be a simple
function of time, such that the nondimensional equations for u and x
are integrable prior to the tip-off phase, the nondimensional equation
for @L is a linear differential equation with variable coefficients
subsequent to detent. No exact, closed-form solution to the variable
coefficient equation has been found. However, approximate analytical
solutions are given in Appendix E.

During free-flight, the equations for u can be integrated exactly for
CX constant. Then the equations for B and r become linear equations with
variable coefficients. Approximate analytical solutions to such equations

can probably be obtained,but were not attempted during this study.




APPENDIX C

MORE GENERAL LAUNCHER/ROCKET SYSTEM !MODEL

Purpose and Phvsical Description

A more general launcher/rocket system model than that discussed in
Appendix B is needed to determine, more or less quantitatively, the

effects of rocket imperfections on launcher motion and passive control

characteristics of different launcher configurations. The launcher

model must be general enough to account for dynamic coupling between
launcher degrees of freedom. The system should include models of spin-
producing mechanisms, such as helical rails. The rocket model should

account for the variation in mass and inertia of the rocket and for the

variations in aerodynamic coefficients due to compressibility.

Torsional Springs and
Torsional Viscous Dampers

Fig. C.1 More gemeral launcher/rocket system model.
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All of the above requirements are incorporated into the
general' model described herein. It is basically that described in
Refs. 8 and 9. The launcher physical model is that of a rigid body with
up to three degrees of freedom in rotation about a fixed point (labeled
0 in Fig. C.l). Rotation of the launcher is cons?rained by torsional
springs and torsional viscous dampers. While the rocket is on the launcher,
its motion is rigidly constrained. During various periods of time, the
rocket may have zero to four degrees of relative degrees of freedom.

The rocket is modeled at each instant of time as a "system'" con-
sisting of a rigid solid body within which gaseous fluid is flowing and
from which such fluid is being expelled through a nozzle (see Fig. C.2).

The rigid solid body represents the always solid parts of a free rocket

and also the unburned portion of the solid propellant used to propell the !

rocket. The gaseous fluid represents the propellant that has been burned

but which has not been expelled.

§\~PROPELLANT
X

FLUID i

Fig. C.2 Rocket physical model.

The environment of the rocket, after it has left the launcher, is

composed of a constant density and temperature atmosphere which mav be




in steady motion; i.e., steady winds may be present. A "flat" earth

gravitational model is also part of the environment.

Verbal Description of the Mathematical Model

The equations which mathematically define the system c¢f launcher plus
rocket are rather lengthy. For the most part, they are documented in
Refs. 8 and 9. The full equations including modifications which have been
made, and will be made, during this contractual effort will be documented
in the final report. Hence, a verbal description of the mathematical
model as it now exists is considered sufficient at this time.

The total flight of the rocket is divided into five phases: =pin
detent, guidance, tip-off and free—fliéht. Such a division is neces=zary:
because the equations governing each phase are different. There is a
spin phase only 1f spin is imparted to the rocket by using a spin metor.
I1f such is the case, the rocket has one degree of freedom with respect to
the launcher during the spin and detent phases. During the latter phase,
the thrust builds up to a specified value. The motion of the rocket
relative to the launcher during guidance is restricted to spin and trans-
lation along the "launch axis.”"” The mathematical model includes pro-
visions for imparting spin during the guidance phase via eroding spin
turbines or helical rails.

The guidance phase ends at the beginning of either the tip-off phase

or the free-flight phase. However, although there is some danger of

-ty

ambiguity, the time of end of guidance (EOG) is taken as the instan: o
last phvsical contact between the launcher and the rocket. During the

tip~off phase the rocxct may rotate with respect to the launcher about a

point on the axis of geometric svmmetrv of tnhe rocket.
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The expulsion of mass from the rocket is modeled during all but the spin
phase, since it is the principal contributor to the total thrust. The
actual modeling of the thrust is accomplished by specifving a thrust
profile. Effects of flow within the rocket are not modeled except during
free-flight. Even then, only "jet damping" is considered significant.
By ignoring the thrust due to exit pressure differential, computing an
exit mass flow rate based on a specified exit velocity, and assuming a hollow
cvlindrical propellant charge and a linear variation of mass flow rate
within the rocket,a jet damping moment is determined (see Ref. 8).

The aerodynamic reactions are modeled using tabulated data for aero-

dvnamic coefficients and the center of pressure location. The coefficients

are, in general, functions of Mach number and total angle of attack.

[ ]

£y (N < (_}___x
Za- L]

z

e
\¥

pA

Fig. C.3 Thrust misalignment angles.

Throughout the various phases, the effects of thrust misalignment

are modeled by specifying misalignment angles “ and kz (see Fig. C.3) and

the vector QT. The angles ¥ and « define the angular misalignment and
z y z

the transverse compcnents of QT define the linecar thrust misalignment.
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Fig. C.4 Dynamic mass imbalance angles

Dynamic imbalance of the rocket is modeled by specifving two small

angles =y and ;3. As shown in Fig. C.4, these angles define the initial

orientation of the centroidal principal axes of the rocket relative to

1" "

the centroidal 'geometric” reference frame Cxvz and hence define products
of inertia. Although the moments of inertia of the rocket zre time vary-
ing, the products of inertia are assumed to be constant. The rocket is

assumed to be statically balanced.

Solution of the Equations o Motliorn

Solutions %o the vguations of motion are obtained by numerically

integrating the equation~ 7 motion using a fourth-order Runge-Kutta

algorithm. Until the rocket Ztarts to oove With respect to the launchers
and also during free-Ulisht, inteuevation iz with respecs to fime. To

obtain precise guidance lengths, intepration is with respect to displace-
ment along the launcher after the ro:rket bewins to translate until the

end of the tip~off phase.




Calculation of Trajectoryv Deviations due to Imperfections

To determine trajectory deviations due to rocket imperfections,
nominal and 'perturbed' trajectories are generated. The nominal trajectory
is that for a perfect rocket; i.e., one with no thrust misaligameut and
no dynamic imbalance. Deviation in the positicn of the rocket's center

of mass and its velocityv well after burnout are obtained as indicared in

Appendix A.
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APPENDIX D

"SECULAR" RATES DUE TO THRUST MISALIGNMENT

AND DYNAMIC IMBALANCE

Most Elementary Model of a Free Rocket with Imperfections

The most elementary model of a free rocket that is imperfect because
its thrust vector is misaligned and/or it is dynamically imbalanced is a
rigid body which is acted upon by a constant magnitude thrust force and
no other forces or moments. Such a model is obviously not a valid one
for the entire free flizht of a rocket; however, it provides remarkably
good results®*!? for a short period of time after end-of-guidance (EOG).
The attitude motion of such a model is composed of an essentially constant
spin about its longitudinal axis, a periodic nutation of the longitudinal
axis at a frequency almost equal to the spin frequency,and a very low
frequency periodic precession of the longitudinal axis about a fixed axis
which is not collinear with the longitudinal axis at E0G. The precessional
frequency is so low for slender rockets that the precessional motion
appears secular; i.e., monotonic in time.

Because in actual flight a free rocket is acted upon by stabilizing
(in most cases) aerodynamic moments and because the speed required to
give significant magnitude to these moments is achieved shortly after
EOG, the '"secular" precessional motion is rather quickly replaced by a
shorter period oscillatory motion. It appears that the majority of
the total flight error is caused by this "secular" precessional motion
during the period of time before the aerodynamic moments become signif-

icant.
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Generation of the "Secular" Rate

If the launcher is perfectly rigid, there is, of course, no trans-
verse component of the angular velocity of the rocket at EOG. However,
the precessional rate which appears as essentially constant transverse

angular velocity components of a non-rolling coordinate frame with origin

at the rocket center of mass is generated during one-quarter of a revolu-
tion of the spinning rocket. This fact can be shown by considering the
solution to the equations of motion of the elementary model.

Let the longitudinal, or axial, moment of inertia of the rocket

(model) be Ix and let its transverse moment of inertia be IT. Also, let

the spin rate of the model be p. Let the angular velocity of the rocket

; be j
w = pg + qi + rg R (D-1)

where the unit vector triad (i, i, E) is associated with the rocket-fixed
reference frame Cxyz (see Fig. A.l).

1 Consider now the case of thrust misalignment (similar results exist ;
for the case of dynamic imbalance) wherein the torque on the rocket about
C is

T = FT (—lcayl - EcazE) , (D-2)

where RC is the distance from C to the point of intersection of the thrust,
ET’ with the x-axis and ay and a, are thrust misalignment angles. The
equations of rotational motion are

p=0 (D-3a)

q = nr - EcayF,r/IT (D-3b)

—— -
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and

r = -nq ~ lcazFT/IT (D-3c¢)

where n = [(IT-IX)/IX]P-

. The angular velocity components, p, q, and r, are related to the

QQ\h time rates of change of Euler angles ¥, 6 and ¢ (see Fig. A.1l) by the
equations,
& = p + (q sind + r cos¢d) tand (D-4a)
6 = q cosd - r sind (D-4b)
and
@ = (q sind + r cosd)/cosb. (D-4c)

Let the non-rotating reference frame Ox shown in Fig. A.l1l be oriented

EE°E
such that thexE-axis is collinear with the launch direction. Tran 8 will

be small, so that,

& =p (D-5a)
X and
é cos¢d -sing q
R . (D-5b)
] sind cosd 4
The solution to Eqs. (D-3) with q and r initially zero is
p = constant, (D-6a)
q = -%.F la, (1-cos nt) + a, sin nt]/(nl,) (D-6b)
and
re= -chT[azsin nt - ay(l—con nt)]/(nIT). (D~6c)

The approximate pitch and yaw rates, © and ¢, which may be obtained

from Eqs. (D~4) and (D-5S) are (¢=0 initially),
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De
R

= [ECFT/(nIT)]{az[cosAt - cos¢] + ay[sinkt - sing]} (D-7a)

and

R
|

& [QCFT/(nIT)]{uz[sinkt - sing] ay[coslt - cos¢ll} , (D-7b)

where A = (Ix/IT)p' The angular rates é and & are the transverse anglular
velocity components of a non-rolling (non-spinning) coordinate frame
otherwise fixed in the rocket. Since for the range of values of the
inertia ratio, Ix/IT’ corresponding to free rockets A<<p, the solutions for

6 and Y can be further simplified to obtain

6 = 8 (1-cos) + [4cF,/ (1) Jo (At-sind) (D-8a)
and
< § = § (1-cos) + [8.F,/(al D))o [Ae-sind], (D-8b)
h where
es = azlcFT/(nIT) (D-9a)
and
:y ws = —ayﬁcFT/(nIT) (D-9b)

are the "secular" rates alluded to above. Without loss of gemerality, one
can assume that the rocket-fixed axes are oriented so that ay-O, or az=0.

Then, it is evident that ézés or ¢=¢s for the first time when ¢=u/2.

'
P e T ST

Also, it is clear that, since At<<l for several spin revolutions 6s and
&s are the average values of é and &, respectively.

It is of interest also to see how the "secular" rate of a spinning
rocket compares to the truly secular rate generated by the same torque
acting on a non-spinning rocket. From Eqs. (D-9) it is cleer that if a
torque azlcFTE acted on a non-spinning rocket for a time period 1/m, a

pitch rate equal to és would be generated. This time period is less than
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) that required for a quarter revolution of the spinning rocket; i.e.,
m/2p = T/2n.
)




APPENDIX E
APPROXIMATE ANALYTICAL

SOLUTIONS FOR LAUNCHER MOTION

Comments on the Equations of Motion

The equations of motion for even the simple launcher/rocket system
model described in Appendix B are fairly complicated nonlinear, ordinary
differential equations. No exact general solution to these equations
have been found. However, an approximate analytical solution for the
angular rate of a single-degree-of-freedom launcher before tip-off has
been obtained. This solution appears to be more accurate than that given
in Ref. 10 (pp. 57-59).

Simplification of the Equations of Motion

To remove the complications presented by nonlinear equations, it is
assumed that |@L| is small so that Eqs. (B-31) describe the launcher
motion. Also, f(T) is assumed to be the explicit function of T defined
as

t/1, for <1, ,

£(1) = 1 1 (E-1)

1 for tzﬁl ,

where T is a constant. Equations (B-31b) and (B-31lc) can easily be
integrated exactly if f(t) has this simple form.

A further simplification is acheived by setting the damping coef-
ficient equal to zero. Finally, the form of Eq. (B-3la) is modified

somewvhat by introducing the definitions,

91
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IO = 1+ elxy + 3 EDIED (E2a)
€ = 2mL2/I0 (E-2b)
2 N
Ip=1,+ 1 + mxc(O) (E-2¢)
. . ]
R W, (k/Io)e (E-2d)

and, as in Appendix B,

‘ E(T) = [x (D) x (O/L . (E-2e)
s Then, one has
3 d - . 2- - -
SO T el = eGxy + g-1)E(D) . (E-3)
Let 3
h(t) = J(T) @L' . (E-4)
Then, i 1
T i
] 2 = - -7 - i
h' +wy Jh/J(T) dT €(x0 + g !Lc)f(r) . (E-5) |
° -
or o
b
" + [wg/J(r)}h = e(io +E - 'ic)f'(r) + e w()E(T) . (E~6) -

Equation (E-6) is the basic equation of motion considered in this appendix.

e i b T i

During the detent phase, Eq. (E-6) is a nonhomogeneous, linear, constant- 1
coefficient, ordinary differential equation and can easily be solved
exactly. However, after detent release, its coefficients are time varying

and its exact, analytical, general solution probably cannot be found.

¢ i A PN A e it iaadS aan - a £ aibai




Solution During the Detent Phase

Before the detent mechanism releases, £=0, u30 and J(T)=1. Also,

£f'(1) = 1/11. Thus, for 0§;<1D,

" 2 = byt _' _
h" + wy b e(x0 SLC)/Tl (E-7)

The general solution to Eq. (E-7) can be found by standard methods and

is

h(T) = a(;o-ic)/(mérl)(l - cos wor) . (E-8)

Furthermore, since J(T) = 1, Wi = h(1) for 0§I<TD.

Approximate Solution During the Interval (T ,Tll

After the rocket starts to translate, £(T) and u(T) must be determined.

Since [see Eq. (B-31b)]

u' = 2t/t, THSTET, (E-9)
and u(TD) = Q,

- 2 2

a(T) = 1 /Tl - TD/Tl, TD<T<T1 . (E-10)

Also, since

g' = u,

it follows that

- 3 - 3 - 2 -
E(T) = 1 /(311) tD/(3rl) (TD/rl)(r TD) .

Let z = T=-T Then, Eq. (E-6) can be written as

D

h" + G3(z) h = g(2) ,

where now ( )' = d( )/dz,
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G3(z) = wé/[l + e(io + % g)e]

g(z)
[§o - RC]/Tl .

2 2
4er /Tl s

= 2
= 4€TD/T1

3 45/(3112) . (E-154d)

An approximate solution to Eq. (E-13) can be obtained by treating €

as a small parameter and letting

h = h0 + ehl + ...

where ho,hl,... are functions of time to be determined.

First, G2(z) can be rewritten (for € suitably small) as
G2(z) = w 2[1-€(X. + = E)E+...] (E-17)
0] ¢ 2

By substituting Eq. (E-16) into Eq. (E-13) and equating the coefficients

of various powers of € to zero, one gets, for €°

1" 2 =
h0 + W, ho 0,

and for €,

" 2 .l-_ 2197 -
hy + Wy h1 7 % [2x0 + E]E ho + g(z)/e . (E-18b)

Because the term l-wozgzh

> should be very small, it is neglected.

0
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Standard methods may be used to first solve Eq. (E-18a) and next i

Eq. (E-18b), so that the first-order solution for h can be expressed as

h(z) = [h(TD) -aO/w02+ azlwo"]coswoz

[ 3= 3 5
+ [h (TD)/wo al/w0 + a3/u.\0 ]Sinwoz

+ aO/wo2 - azlmo“ + [(allmé) -a3/w0"]z

+ [a2/(2w03)]2:2 + [613/(60002)]23 f

+ € ;0 wO/Tl{[TDz3/6 + z“/za][h(rn)sinmoz - h'(TD)/wocoswoz]

2 3 '
+/z [TDT /2 + 1 /6]cos2w0'r at[h (TD)/wocoswoz + h('tD)sinsz]
0

+ J,} [TDTZ/Z + T3/6]sin2m0TdT[h(TD)cosm
0

0%~ h'(TD)/wosinmoT]}

(E-19)

where the integrals are available in standard tables.

Approximate Solution when T>T.
E S

The function Gz(z) will differ a good deal from woz for T>T1 and a

solution for this time period which has the form of Eq. (E-19) is not very

accurate., An alternative is to use the WBKJ approximat:ion.11 The approx-
imate solution obtained has the form, (here z = T—Tl)

k -1/2,

f hh(z) = [G(2)] {Clcos¢(z) + Czsin¢(z)} , (E-20)

;

g where C, and C, are arbitrary constants and

E z

[ ¢(2z) = [ G(z) dz .

A

5 0
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Thus, one may consider

hy(2) = p(2)sind(2) (E-22a)
and

hZ(z) = p(2z)sing(z) (E-22b)
where

p(2) = [1+ ey + 2 pg1 ™/ ' (8-23)

to be approximate, linearly independent solutions to (E-13) with g(z) = 0.

Then, by the method of variation of parameters, one may get an approximate

solution to the nonhomogeneous equations in the form,

h = p(z){(Alcos¢ + Blsin¢]

Z
v e e
0

Z

- f 3—{%?2—?;%2 dz cosd . (E-24)
0 .

It is obvious that the integrals in Eqs. (E-23) and (E-24) are com-
plicated; and, apparently, no closed-form evaluations of them can be
obtained. However, if one assumes that € is small, then neglecting terms

which are second-order in ¢

R

G(z) wo[l-s<2§o£+£2>/4] ,
and -

p(2)

|1

[l+€(2)-c0 gE+£2)/8] .

£ i sl s 43k omdn AL o s et s b
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Furthermore, since g(z) is of order €, it appears reasonable to replace

p(z) in the integrands by 1, ¢' by w. and ¢ by w_.z for the purpose of

0

evaluation. The approximate solution thereby obtained is

0

h(T) = p(z) {(A;cos + B sing]
+ 1, (2)cosd + r,(2)sind} , (E~27)

where

A1 = h(Tl) s (E-28a)

B, = h'(1)) - p'('rl)h(rl)/wo s (E-28b)

r () = -e/woz[gul) -Ecoswy z + 2/ sinw 2] (E-29a)
and

r,(z) = -e/wozf-c:'sinwoz + 2(1-cosw,2)] (E-29b)
In Egs. (E-29),

£=2" + & (1z + E(1)) . (E-30)

Comments on the Approximate Solution

The solution given above should be fairly good approximations to the
actual solution for h(1) when G(T) does not vary too much. Results obtained
from the solutions and hopefully other approximate solutions for more

detailed launcher models will be given in the final report.
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